Section 9.5: The Doppler Effect

Tutorial 1 Practice, page 435

1. Given: \(v_{\text{source}} = 20.0 \text{ m/s}; f_0 = 1.0 \text{ kHz}; \)
\(v_{\text{detector}} = 0 \text{ m/s}; v_{\text{sound}} = 330 \text{ m/s} \)

Required: \(f_{\text{obs}} \)

Analysis:

\[
\frac{v_{\text{sound}} + v_{\text{detector}}}{v_{\text{source}}} f_0
\]

Solution:

\[
\frac{v_{\text{sound}} + v_{\text{detector}}}{v_{\text{source}}} = f_0
\]

\[
\begin{align*}
\text{Given:} & \\
\text{v_{sound} + v_{detector} =} & 330 \text{ m/s + 0 m/s} \\
\text{v_{source} =} & \frac{330 \text{ m/s} + (-20.0 \text{ m/s})}{(1.0 \text{ kHz})} \\
\text{=} & \frac{330 \text{ m/s}}{310 \text{ m/s}} (1.0 \text{ kHz}) \\
\text{=} & 1100 \text{ Hz}
\end{align*}
\]

\(f_{\text{obs}} = 1.1 \text{ kHz} \)

Statement: The detected frequency of the approaching police car is 1100 Hz, or 1.1 kHz.

2. Given: \(f_{\text{obs}} = 900.0 \text{ Hz}; v_{\text{detector}} = 0 \text{ m/s}; \)
\(f_0 = 950.0 \text{ Hz}; v_{\text{sound}} = 335 \text{ m/s} \)

Required: \(v_{\text{source}} \)

Analysis:

\[
\frac{v_{\text{sound}} + v_{\text{detector}}}{v_{\text{source}}} = f_0
\]

\[
\begin{align*}
\text{v_{source} + v_{detector} =} & \frac{f_0}{f_{\text{obs}} (v_{\text{sound}} + v_{\text{detector}})} \\
\text{v_{source} =} & \frac{f_0}{f_{\text{obs}} (v_{\text{sound}} + v_{\text{detector}})} - v_{\text{sound}}
\end{align*}
\]

Solution:

\[
\begin{align*}
v_{\text{source}} &= \frac{f_0}{f_{\text{obs}}} (v_{\text{sound}} + v_{\text{detector}}) - v_{\text{sound}} \\
&= 950.0 \text{ Hz} (335 \text{ m/s} + 0 \text{ m/s}) - (335 \text{ m/s}) \\
&= 95 \text{ m/s} (335 \text{ m/s} - 335 \text{ m/s})
\end{align*}
\]

\(v_{\text{source}} = 18.6 \text{ m/s} \)

Statement: The speed of the ambulance is 18.6 m/s.

(b) Answers may vary. Sample answer:

Two examples of the Doppler effect are the noise of a jet at an air show and the sound of a racecar to someone near the track.

2. A sound wave has a higher frequency when the source is approaching a stationary observer because the sound waves are compressed as the source gets closer to the observer. Compressed sound waves mean a higher frequency.

3. Given: \(f_0 = 300.0 \text{ Hz}; T = 15 \text{ °C}; \)
\(v_{\text{detector}} = 0 \text{ m/s}; v_{\text{source}} = 25 \text{ m/s} \)

Required: \(f_{\text{obs}} \)

Analysis: \(v_{\text{sound}} = 331.4 \text{ m/s} + (0.606 \text{ m/s}°\text{C})T; \)

\[
f_{\text{obs}} = \frac{v_{\text{sound}} + v_{\text{detector}}}{v_{\text{source}} + v_{\text{detector}}} f_0
\]

Solution: Determine the speed of sound at 15 °C:

\[
\begin{align*}
\text{v_{sound} =} & 331.4 \text{ m/s} + (0.606 \text{ m/s}°\text{C})T \\
&= 331.4 \text{ m/s} + \left(0.606 \frac{\text{m/s}}{\text{°C}}\right) (15°\text{C})
\end{align*}
\]

\(v_{\text{sound}} = 340.5 \text{ m/s} \)

Determine the frequency detected by the observer:

\[
\begin{align*}
f_{\text{obs}} &= \frac{v_{\text{sound}} + v_{\text{detector}}}{v_{\text{source}} + v_{\text{detector}}} f_0 \\
&= \frac{340.5 \text{ m/s} + 0 \text{ m/s}}{340.5 \text{ m/s} + (-25 \text{ m/s})} (300.0 \text{ Hz}) \\
&= \frac{340.5 \text{ m/s}}{315.5 \text{ m/s}} (300.0 \text{ Hz})
\end{align*}
\]

\(f_{\text{obs}} = 320 \text{ Hz} \)

Statement: The detected frequency of the object is 320 Hz.

4. Given: \(f_0 = 850 \text{ Hz}; \Delta f = 58 \text{ Hz}; v_{\text{detector}} = 0 \text{ m/s}; \)
\(v_{\text{sound}} = 345 \text{ m/s} \)

Required: \(v_{\text{source}} \)

Analysis: \(f_{\text{obs}} = f_0 + \Delta f; \)

\[
f_{\text{obs}} = \frac{v_{\text{sound}} + v_{\text{detector}}}{v_{\text{source}} + v_{\text{detector}}} f_0
\]

\[
\begin{align*}
\frac{v_{\text{sound}} + v_{\text{source}}}{v_{\text{source}} + v_{\text{detector}}} &= \frac{f_0}{f_{\text{obs}} (v_{\text{source}} + v_{\text{detector}})} \\
\frac{v_{\text{source}}}{v_{\text{source}} + v_{\text{detector}}} &= \frac{f_0}{f_{\text{obs}} (v_{\text{source}} + v_{\text{detector}})} - v_{\text{source}}
\end{align*}
\]

Solution: Determine the observed frequency:

\[
\begin{align*}
f_{\text{obs}} &= f_0 + \Delta f \\
&= 850 \text{ Hz} + 58 \text{ Hz} \\
&= 908 \text{ Hz}
\end{align*}
\]

Section 9.5 Questions, page 435

1. (a) The Doppler effect describes the changing frequency of sound as the source is in motion relative to an observer.
Determine the speed of the fire truck:

\[v_{source} = \frac{f_{obs}}{f_{obs}} \left(v_{sound} + v_{detector} \right) - v_{sound} \]

\[= \frac{850 \ Hz}{908 \ Hz} \left(345 \ m/s + 0 \ m/s \right) - \left(345 \ m/s \right) \]

\[v_{source} = -22 \ m/s \]

Statement: The speed of the fire truck is 22 m/s.

5. **Given:** \(v_{source} = 0 \ m/s; f_0 = 440.0 \ Hz; \)
\(v_{detector} = 90 \ km/h; T = 0 \ ^\circ C \)

Required: \(f_{obs} \)

Analysis:

\[f_{obs} = \frac{v_{sound} + v_{detector}}{v_{sound} + v_{source}} \cdot f_0 \]

Solution: Since the temperature is 0 °C, the speed of sound is 331.4 m/s.

Convert \(v_{source} \) to metres per second:

\[v_{source} = 90 \ km/h \]
\[= 90 \ \frac{km}{h} \left(\frac{1000 \ m}{1 \ km} \right) \left(\frac{1 \ h}{60 \ min} \right) \left(\frac{1 \ min}{60 \ s} \right) \]

\[v_{source} = 25 \ m/s \]

Determine the observed frequency of the horn as I approach the observer:

\[f_{obs} = \frac{v_{sound} + v_{detector}}{v_{sound} + v_{source}} \cdot f_0 \]

\[= \left(\frac{331.4 \ m/s + 0 \ m/s}{331.4 \ m/s + (-25 \ m/s)} \right) [440 \ Hz] \]

\[= \left(\frac{331.4 \ m/s}{306.4 \ m/s} \right) [440 \ Hz] \]

\[f_{obs} = 480 \ Hz \]

As I pass the observer, the person will detect the exact frequency of the horn.

Statement: The person will detect a frequency of 480 Hz as I approach, and a frequency of 440 Hz as I pass.

6. **Given:** \(v_{detector} = 0 \ m/s; f_{obs} = 560 \ Hz; \)
\(v_{sound} = 345 \ m/s; f_0 = 480 \ Hz \)

Required: \(v_{source} \)

Analysis:

\[f_{obs} = \frac{f_0}{f_{obs}} \left(v_{sound} + v_{detector} \right) \]

\[= \frac{f_0}{f_{obs}} \left(v_{sound} + v_{source} \right) \]

\[v_{source} = \frac{f_0}{f_{obs}} \left(v_{sound} + v_{detector} \right) - v_{sound} \]

Solution:

\[v_{source} = \frac{f_0}{f_{obs}} \left(v_{sound} + v_{observer} \right) - v_{sound} \]

\[= \frac{560 \ Hz}{480 \ Hz} \left(345 \ m/s + 0 \ m/s \right) - \left(345 \ m/s \right) \]

\[= \frac{56 \ Hz}{48 \ Hz} \left(345 \ m/s \right) - 345 \ m/s \]

\[v_{source} = 58 \ m/s \]

Statement: The speed of the source is 58 m/s.

7. The frequency reduces. The effect is not instantaneous as it depends on the speed of the source and how far the source is from the observer.